該当箇所へ

論文掲載:ロングリードナノポアシークエンシングによるCHO製造細胞株の統合遺伝子座の解読

New Biotechnology
March 11, 2024

Despite advances in genetic characterization of Chinese hamster ovary (CHO) cell lines regarding identification of integration sites using Next-generation sequencing, e.g. targeted locus amplification sequencing (TLA-seq), the concatemer structure of the integrated vectors remains elusive. Here, the entire integration locus of two CHO manufacturing cell lines was reconstructed combining CRISPR/Cas9 target enrichment, nanopore sequencing and the Canu de novo assembly pipeline. An IgG producing CHO cell line integrated 3 vector copies, which were near full-length and contained all relevant vector elements such as transgenes and their promoters on each of the vector copies. In contrast, a second CHO cell line producing a bivalent bispecific antibody integrated 7 highly fragmented vector copies in different orientations leading to head-to-head and tail-to-tail fusions. The size of the vector fragments ranged from 3.0 to 11.4 kbp each carrying 1–3 transgenes. The breakpoints of the genome-vector and vector-vector junctions were validated using Sanger sequencing and Southern blotting. A comparison to TLA-seq data confirmed the genomic breakpoints, but most of the breakpoints of the vector-vector fusions were missed by TLA-seq. For the first time, the complete transgene locus of CHO manufacturing cell lines could be deciphered. Strikingly, the application of the nanopore long-read sequencing technology led to novel insights into the complexity of genomic transgene integrations of CHO manufacturing cell lines generated via random integration.

In this project, Genedata Selector was deployed to analyze various Next-generation sequencing (NGS) datasets and perform TLA analysis to identify integration sites and fusions in proprietary cell genomes.